

IMPORTANT NOTICES

DISCLAIMER

This presentation and information contained in it is being provided to shareholders and investors for information purposes only. Shareholders and investors should undertake their own evaluation of the information and otherwise contact their professional advisers in the event they wish to buy or sell shares. To the extent the information contains any projections the Company has provided the projections based upon the information available to the Company. The Company does not make any representations as to the accuracy or otherwise of that third party information.

COMPETENT PERSON STATEMENT

The information in this report that relates to Exploration Results is based on information compiled by Bernard Rowe, a Competent Person who is a Member of the Australian Institute of Geoscientists. Bernard Rowe is a shareholder and Non-Executive Director of G50 Corp Limited (previously Gold 50 Limited). Mr Rowe has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Bernard Rowe consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information in this Presentation that relates to previous mining and/or exploration work is based on information included in the Company's Prospectus dated 21 May 2021 and ASX announcements referenced within this presentation. The Company confirms that it is not aware of any new information or data that materially affects the information included within the Prospectus dated 21 May 2021 and the ASX announcements referenced.

FORWARD LOOKING AND CAUTIONARY STATEMENTS

This Presentation contains "forward-looking information" that is based on the Company's expectations, estimates and projections as of the date on which the statements were made. This forward-looking information includes, among other things, statements with respect to the pre-feasibility and feasibility studies, the Company's business strategy, plan, development, objectives, performance, outlook, growth, cash flow, projections, targets and expectations, mineral resources, results of exploration and relations expenses. Generally, this forward-looking information can be identified by the use of forward-looking terminology such as 'outlook', 'anticipate', 'project', 'target', 'likely',' believe', 'estimate', 'expect', 'intend', 'may', 'would', 'scheduled', 'will', 'plan', 'forecast', 'evolve' and similar expressions. Persons reading this announcement are cautioned that such statements are only predictions and that the Company's actual future results or performance may be materially different Forward-looking information is subject to known and unknown risks, uncertainties and other factors that may cause the Company's actual results, level of activity, performance or achievements to be materially different from those expressed or implied by such forward-looking information.

Forward-looking information is developed based on assumptions about such risks, uncertainties and other factors set out herein, including but not limited to general business, economic, competitive, political and social uncertainties; the actual results of current exploration activities; conclusions of economic evaluations; changes in project parameters as plans continue to be refined; future prices of lithium and other metals; possible variations of ore grade or recovery rates; failure of plant, equipment or processes to operate as anticipated; accident, labour disputes and other risks of the mining industry; and delays in obtaining governmental approvals or financing or in the completion of development or construction activities. This list is not exhaustive of the factors that may affect our forward-looking information. These and other factors should be considered carefully, and readers should not place undue reliance on such forward-looking information. The Company disclaims any intent or obligations to or revise any forward-looking statements whether as a result of new information, estimates, or options, future events or results or otherwise, unless required to do so by law.

Statements regarding plans with respect to the Company's mineral properties may contain forward-looking statements in relation to future matters that can be only made where the Company has a reasonable basis for making those statements. Competent Person Statements regarding plans with respect to the Company's mineral properties are forward looking statements. There can be no assurance that the Company's plans for development of its mineral properties will proceed as expected. There can be no assurance that the Company will be able to confirm the presence of mineral deposits, that any mineralisation will prove to be economic or that a mine will successfully be developed on any of the Company's mineral properties.

EXPERIENCED LEADERSHIP TEAM

DIRECTORS

Rob ReynoldsNon-Executive Chairman

Bernard RoweNon-Executive Director

Mark WallaceManaging Director

lan Davies Non-Executive Director

MANAGEMENT

Danny Sims Arizona Manager

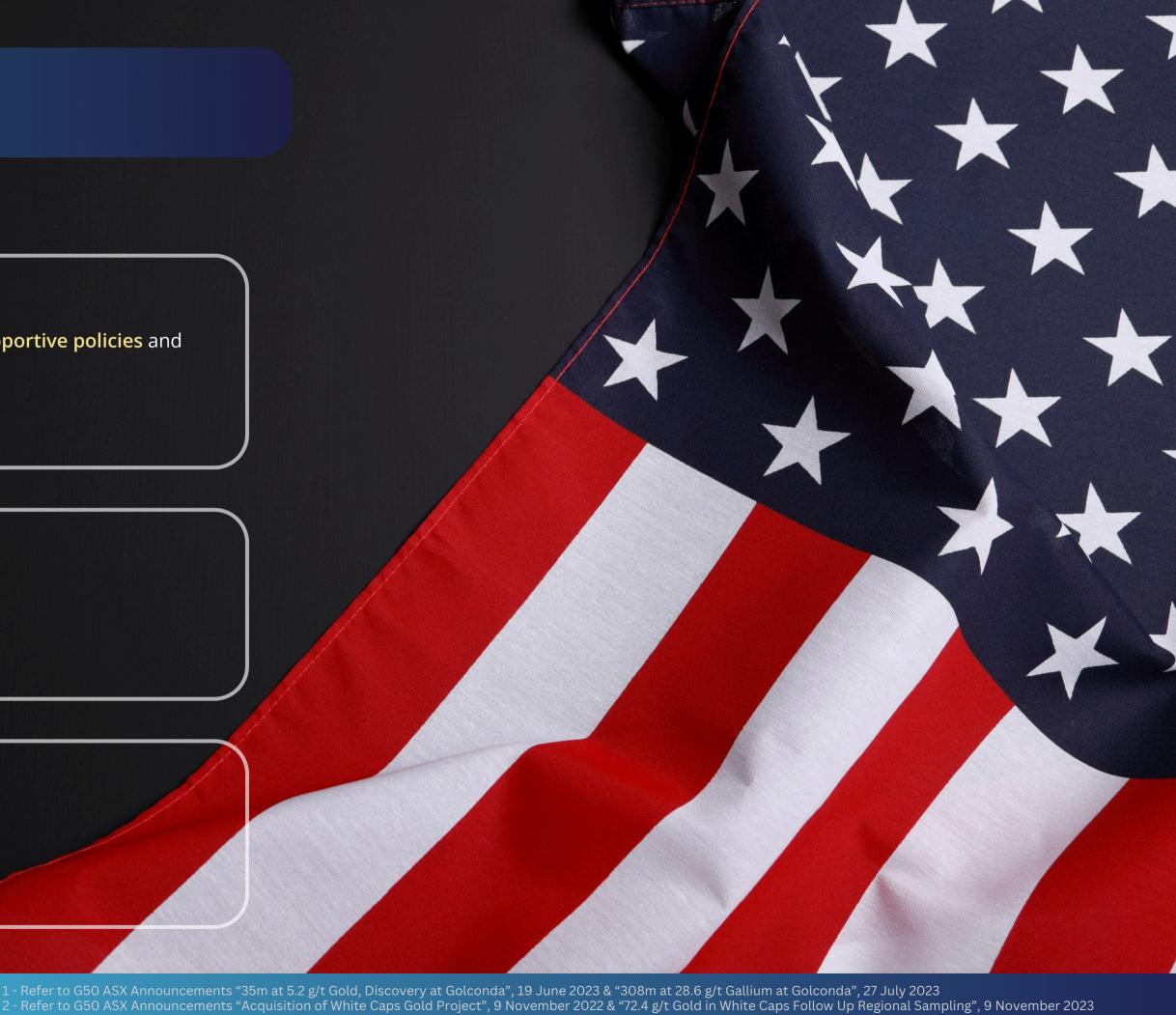
Sharmila WatsonChief Financial Officer

With a track record of discovery in Southwest USA; leveraging strong networks to progress high-quality projects

PROJECTS OVERVIEW

G50 DNA

- Projects close to infrastructure, labor, supportive policies and communities
- Operate from Patented Claims
- Drilling in the shadows of headframes


GOLCONDA, AZ

- High Grade Au / Ag Discovery June 2023
- Significant Gallium Discovery July 2023

WHITE CAPS, NV

• Drilled by Freeport McMoRan in 1982 - 1984

TOP COUNTRIES BY NATURAL RESOURCE VALUE

\$75T

29 Cu Copper 63.546

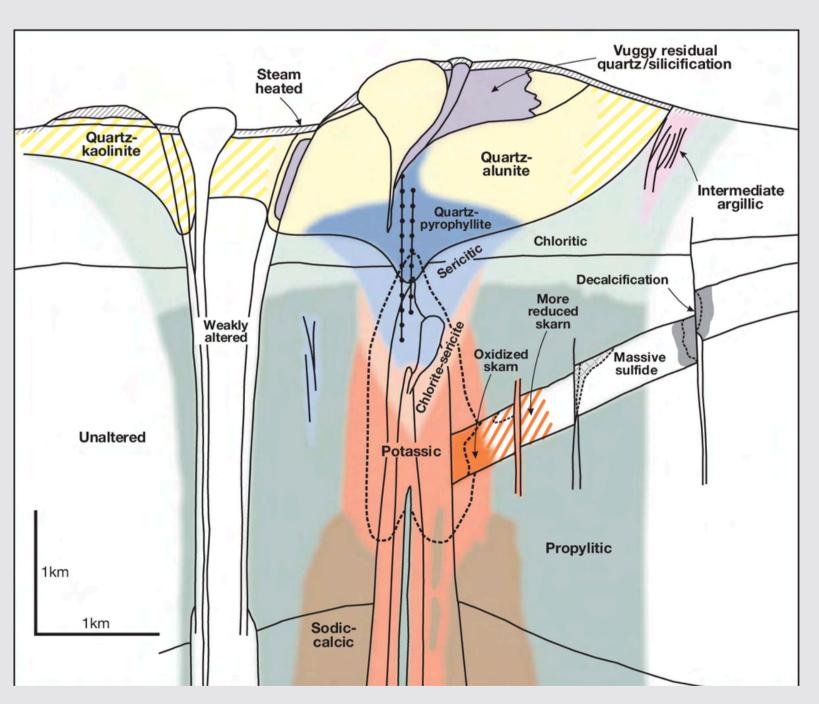
CORE FOCUS GOLCONDA, AZ

HISTORY

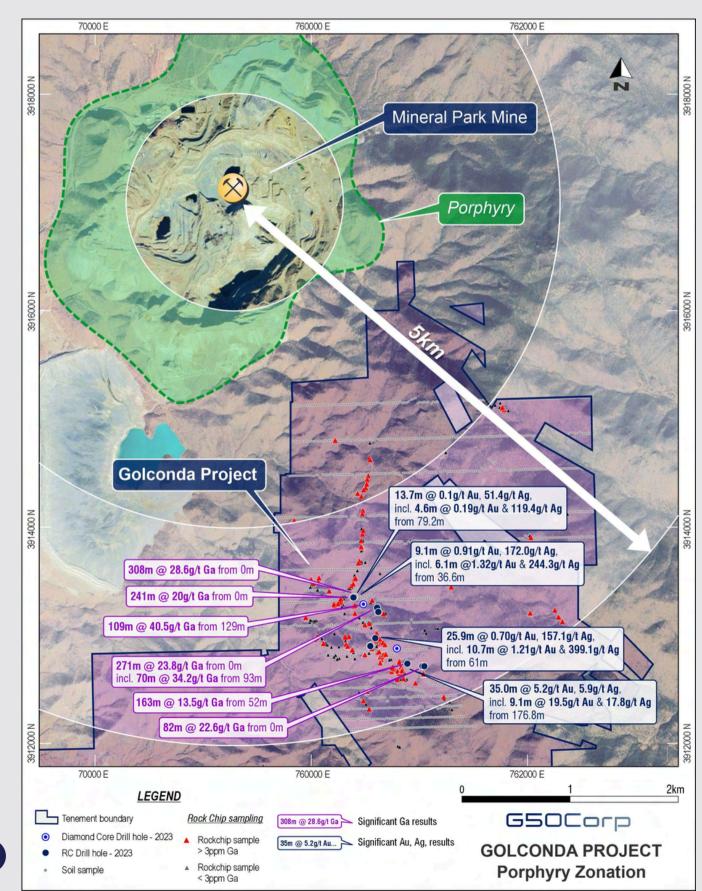
- Polymetallic historical high-grade zinc, lead, gold, and silver producer
- Proximal to major porphyry copper/moly deposit
- Previous exploration: + 10m wide zones of +2g/t Au-Ag mineralisation and base metal mineralisation of between 8 20% zinc in the Tub vein

NEW GOLD & SILVER DISCOVERY IN GRC06:

- 35m at 5.2g/t Au, 5.9g/t Ag from 177m
- including: 9m at 19.5g/t Au and 17.8g /t Ag and 0.4% Zn from 203m
- 26m at 157 g/t Ag and 0.70 g/t Au from 61m in GRC03
- 9m at 172 g/t Ag and 0.91 g/t Au from 37 m in GRC09

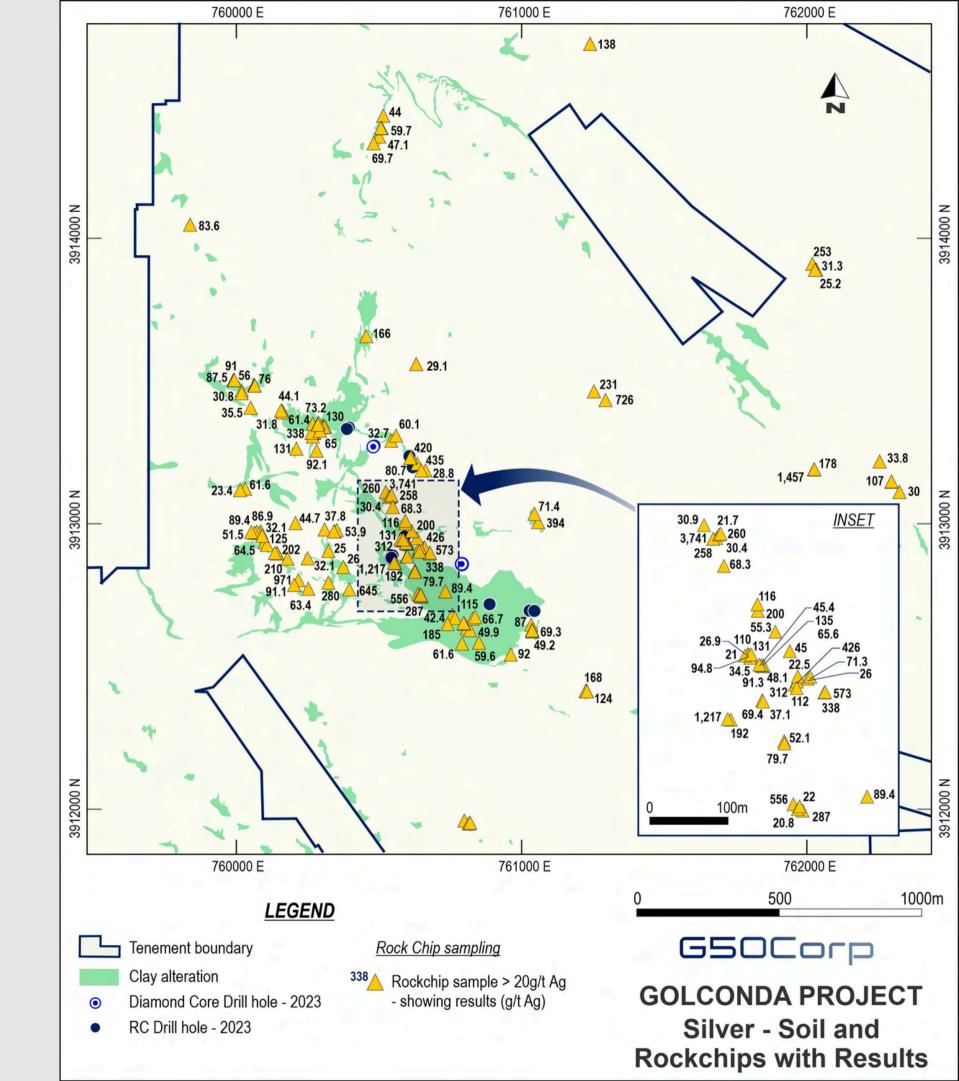

GALLIUM "HALO" DISCOVERY

 Wide-spaced drilling at our Golconda Project has intersected Gallium mineralization in 11 of 14 holes of G50's recent diamond and RC drilling program


HOLE	INTERCEPT	GRAM x METRE
GDD02	109m at 40.5 g/t Gallium from 129m	(4,415 gm*m)
GRC01	241m at 20 g/t Gallium from surface	(4,820 gm*m)
GRC02	308m at 28.6 g/t Gallium from surface	(8,809 gm*m)

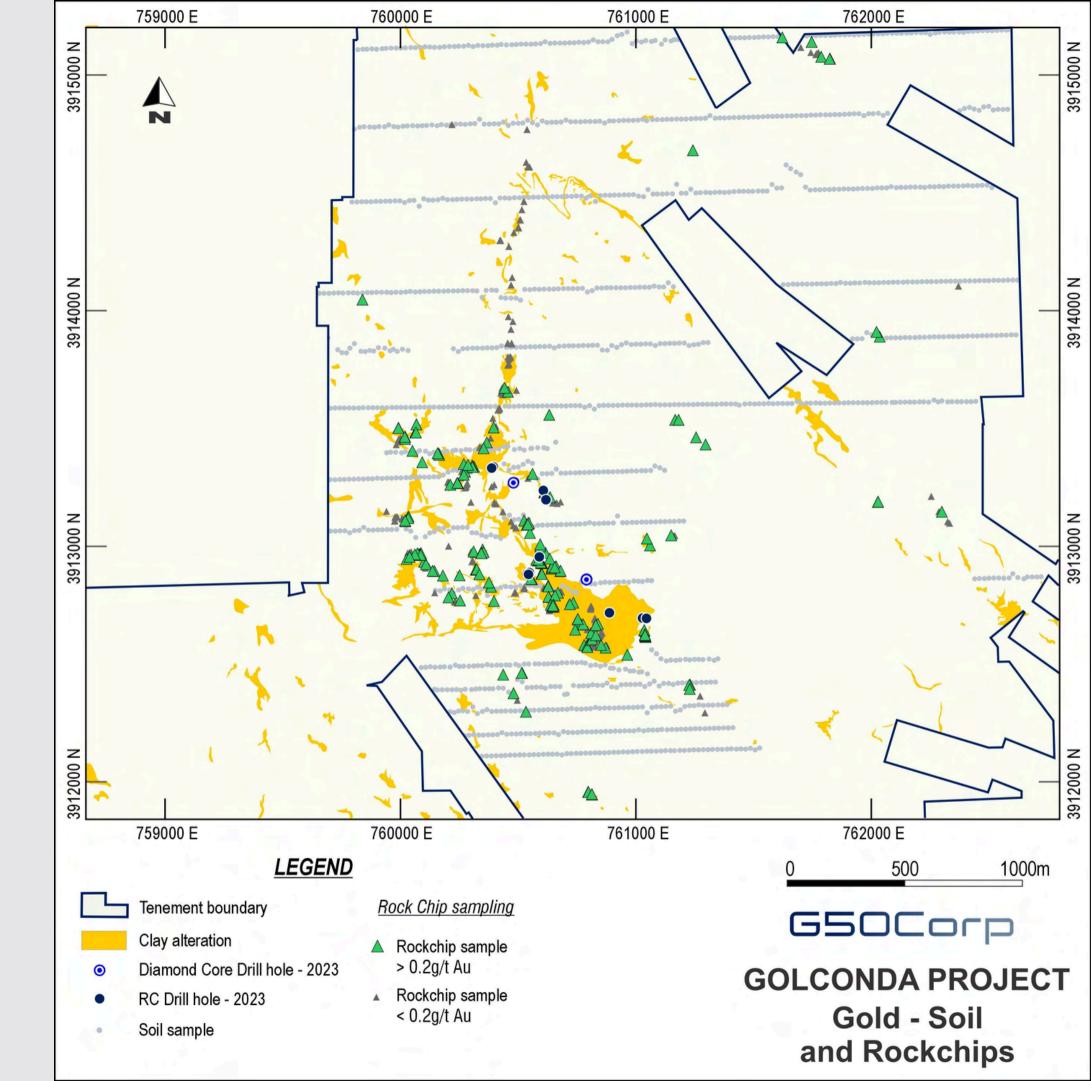
ZONING PATTERN FOR TELESCOPED PORHRY CU DEPOSITS

Porphyry-type Cu system. Sillitoe (1999b, 2000)


MINERALIZATION

- Shallow alteration mineralization types consistently overprint deeper ones. Volumes of the different alteration types vary markedly from deposit to deposit.
- Sericitic alteration tends to be more abundant in porphyry Cu-Mo deposits.
- Alteration-mineralization in the lithocap is commonly far more complex than shown, particularly where structural control is paramount.

Modified from Sillitoe (1999b, 2000)


SILVER ROCK CHIPS > 20 g/t

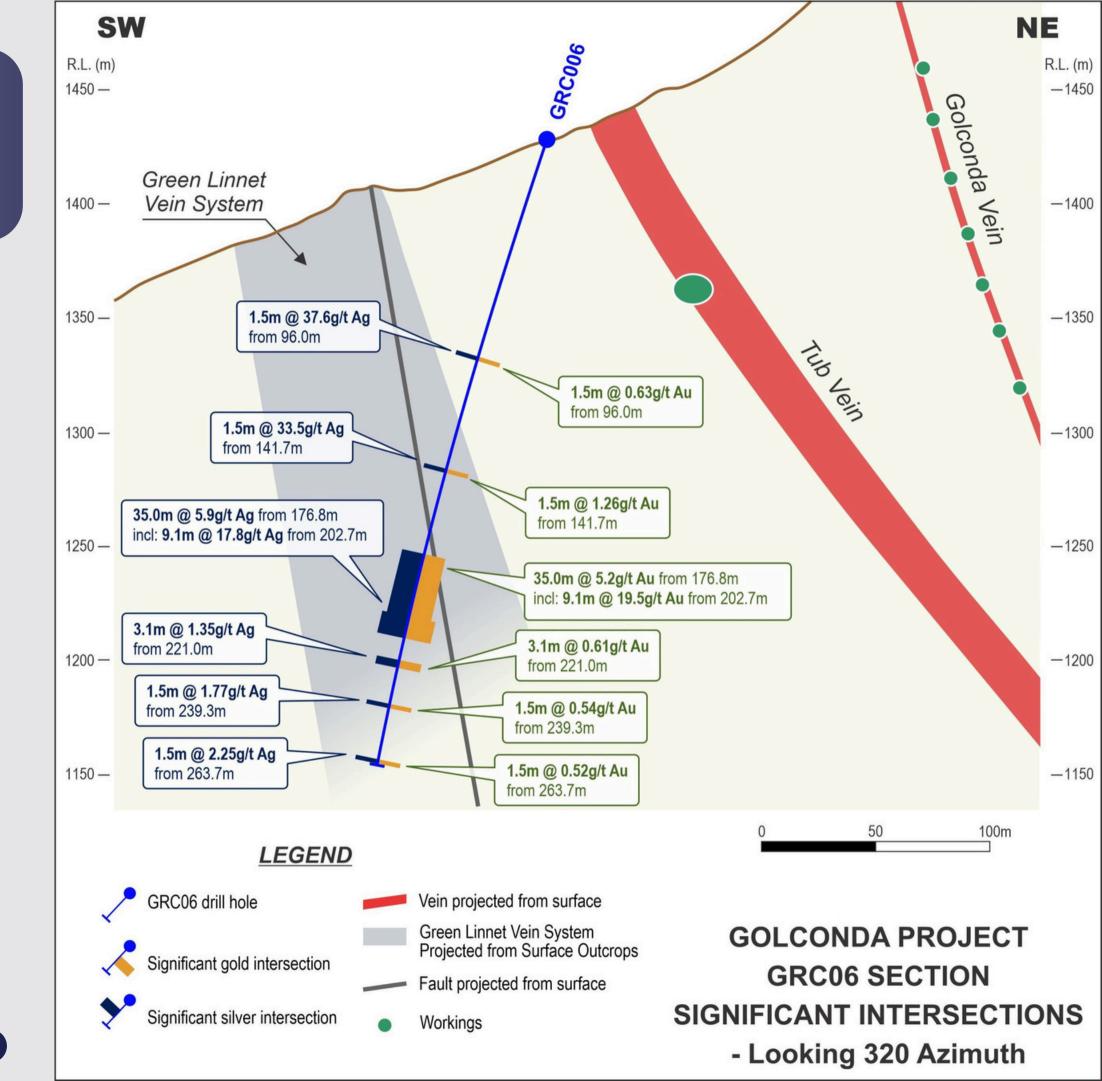
- 165 rock chip samples above 20 g/t Ag
- 53 samples assayed greater than 100 g/t Ag
- Peak silver assay results in rock chips including;
 - 3,741 g/t
 - 1,457 g/t
 - 1,246 g/t
 - 1,217 g/t
 - 1,091 g/t
 - 1,037 g/t

GOLD ROCK CHIPS > 0.20 g/t

- 182 rock chip samples above 0.20 g/t Au
- 69 samples assayed greater than 1 g/t Au
- Peak gold assay results in rock chips including;
 - 54.56 g/t
 - 38.84 g/t
 - 27.91 g/t
 - 21.73 g/t
 - 15.34 g/t

A NEW PRECIOUS METALS DISCOVERY

GRC06

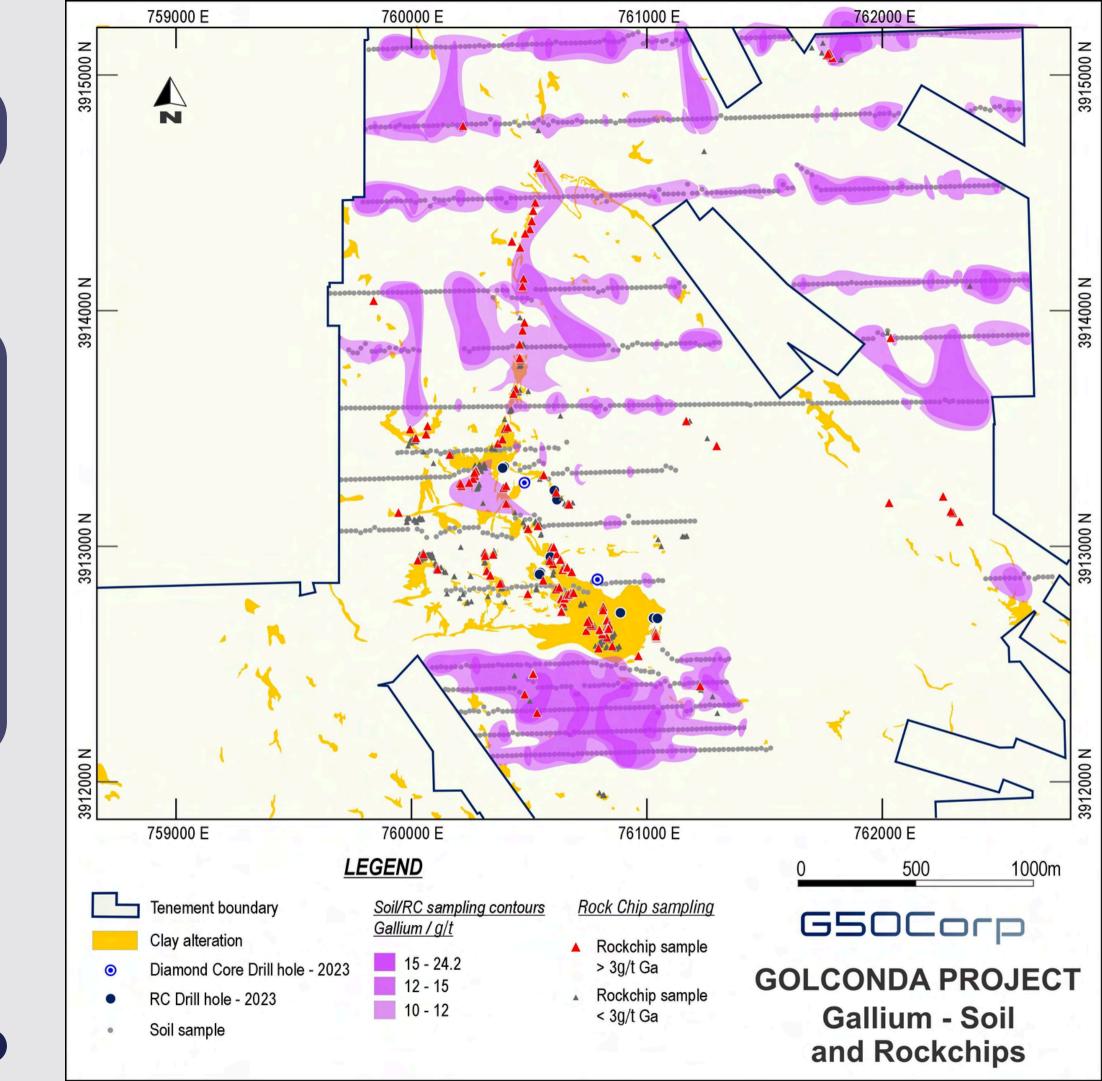

GEOLOGICAL MODEL CONFIRMED

- GRC06 intercepted Au-Ag mineralisation at the down-dip projection of Green Linnet Vein System. The drill hole then penetrated the targeted N-striking fault and high-grade Au was intercepted on the W side of the fault
- The drillhole **did not penetrate the entire width** of the Green Linnet Vein System and **ended in mineralisation** with the interval at the bottom of the hole assaying 0.5g/t Au

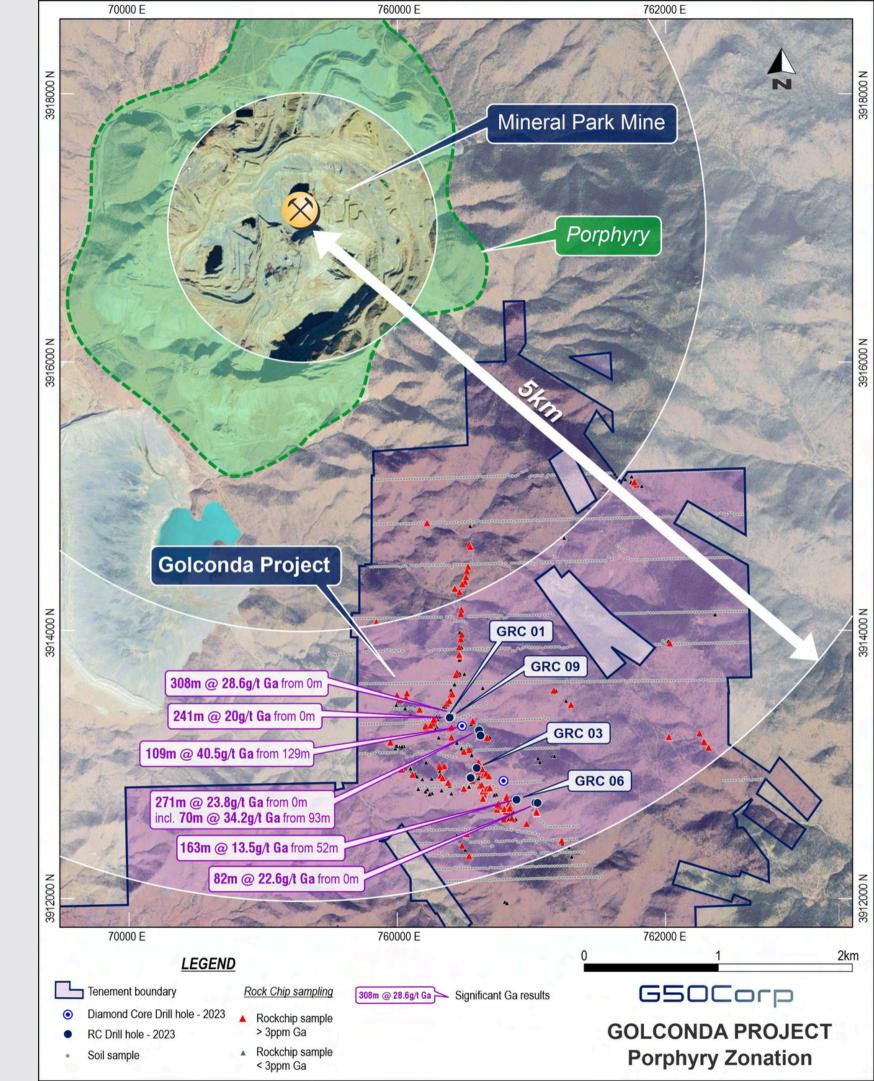
DRILLING RESULTS

- 35m at 5.2g/t Au, 5.9g/t Ag from 177m including:
 - 9m at 19.5g/t Au
 - 17.8g/t Ag
 - 0.4% Zn from 203m

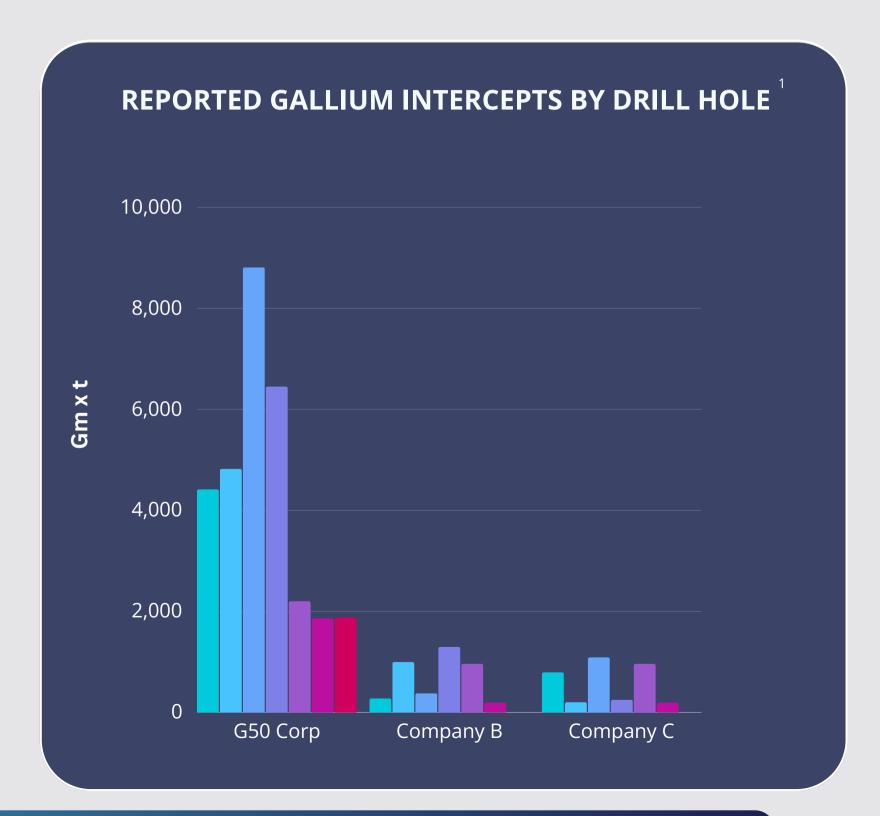
KEY INTERCEPTS - GRC03 & GRC09*


*GRC03 - 53.4 - 58m intercepted backfill in historic workings

HOLE	FROM (m)	INTERVAL (m)	GOLD (g/t)	SILVER (g/t)
GRC01	79.2	13.7	0.10	51.4
including	80.8	4.6	0.19	119.4
GRC03	61.0*	25.9	0.70	157.1
including	61.0*	6.0	1.85	546
GRC06	88.4	10.7	0.27	12.3
including	96.0	1.5	0.63	37.6
GRC06	141.7	6.1	0.37	9.4
including	141.7	1.5	1.26	33.5
GRC06	176.8	35.0	5.2	5.9
including	202.7	9.1	19.5	17.8
GRC06	219.5	45.7	0.2	1.5
including	221	3.1	0.61	1.4
including	239.3	1.5	0.54	1.8
including	263.7	1.5	0.52	2.3
GRC09	24.4	3.1	2.25	10.1
GRC09	36.6	9.1	0.91	172
including	36.6	6.1	1.32	244.3
GRC09	48.8	9.1	0.05	72.5
including	50.3	3.1	0.08	176
GRC09	117.3	18.3	0.08	27.2
including	126.5	3.0	0.09	486

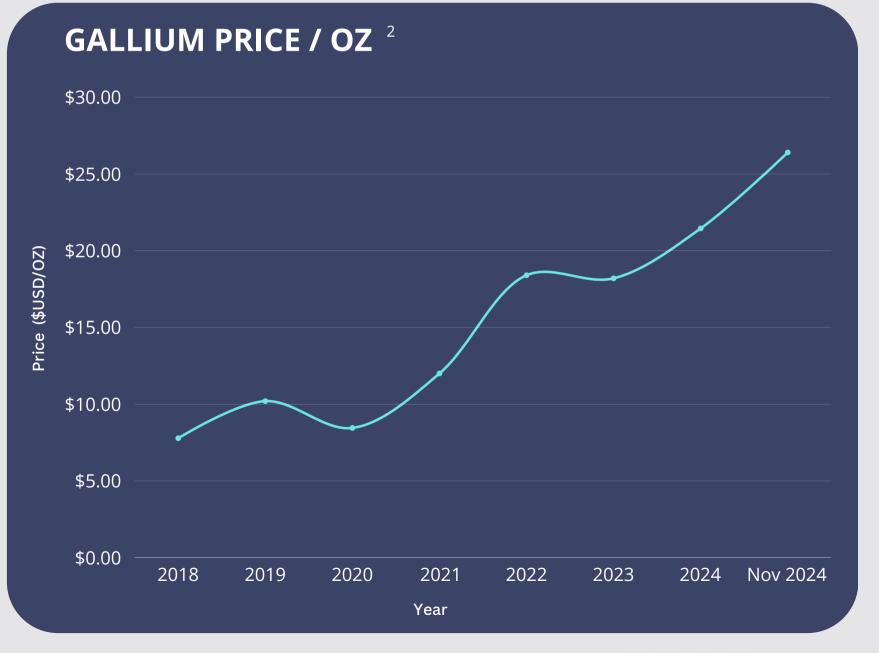

GALLIUM ROCK CHIPS > 3g/t

- 190 rock chip samples above 3 g/t Ga
- 61 samples assayed greater than 6 g/t Ga
- Peak gallium assay results in rock chips including;
 - 28.9 g/t
 - 21.7 g/t
 - 21.6 g/t
 - 20.3 g/t
 - 19.3 g/t
 - 19.2 g/t


GOLCONDA GALLIUM "HALO" DISCOVERY

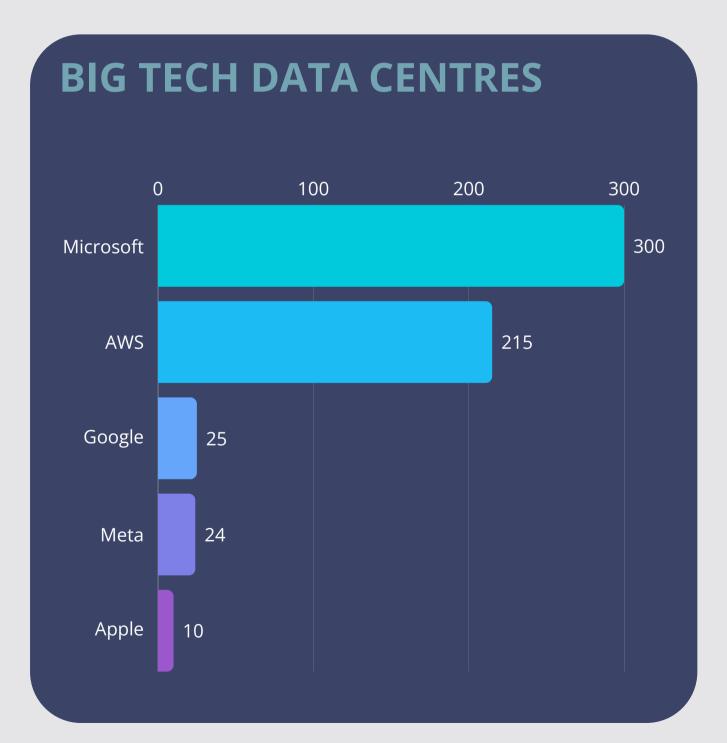
HOLE	INTERCEPT	GRAM x METRE
GDD02	109m at 40.5 g/t gallium from 129m	(4,415 gm*m)
GRC01	241m at 20 g/t gallium from surface	(4,820 gm*m)
GRC02	308m at 28.6 g/t gallium from surface	(8,809 gm*m)
GRC05	271m at 23.8 g/t gallium from surface including 70m at 34.2 g/t gallium from 93m	(6,450 gm*m)
GRC06	163m at 13.5 g/t gallium from 52m	(2,201 gm*m)
GRC08	142m at 13.1 g/t gallium from surface	(1,861 gm*m)
GRC11	83m at 22.6 g/t gallium from surface	(1,876 gm*m)

GALLIUM "HALO" DISCOVERY


Gallium Nitride (GaN) is an important semiconductor material with high critical field strength and electron mobility.

Advantages:

- Higher switching speed and lower ON-resistance.
- GaN contributes to lower power consumption, higher output and reduction in size of equipment


^{1 -} Refer to G50 ASX Announcement "308m at 28.6 g/t Gallium at Golconda" 27 July 2023

^{2 -} Source: Statista 2024

GLOBAL SEMICONDUCTOR MARKET

POTENTIAL SAVINGS PER TIER 1 DATA CENTRE

For a typical major **Tier One Data Centre Operator** assuming **6 smaller** and efficient GaN-based power supplies can perform the work of **10 Si-based units**.


Servers p/rack go from 30 to 34. (Source: GaN Systems)

ADVANTAGES

- Operational savings from energy: U\$5,600 / server rack saves U\$241
 million pa
- Additional revenue from greater server density: U\$5,100 / server rack adds U\$1.1 bn pa
- Lower capex from postponing construction of further data centers:
 \$840 million in CAPEX saving

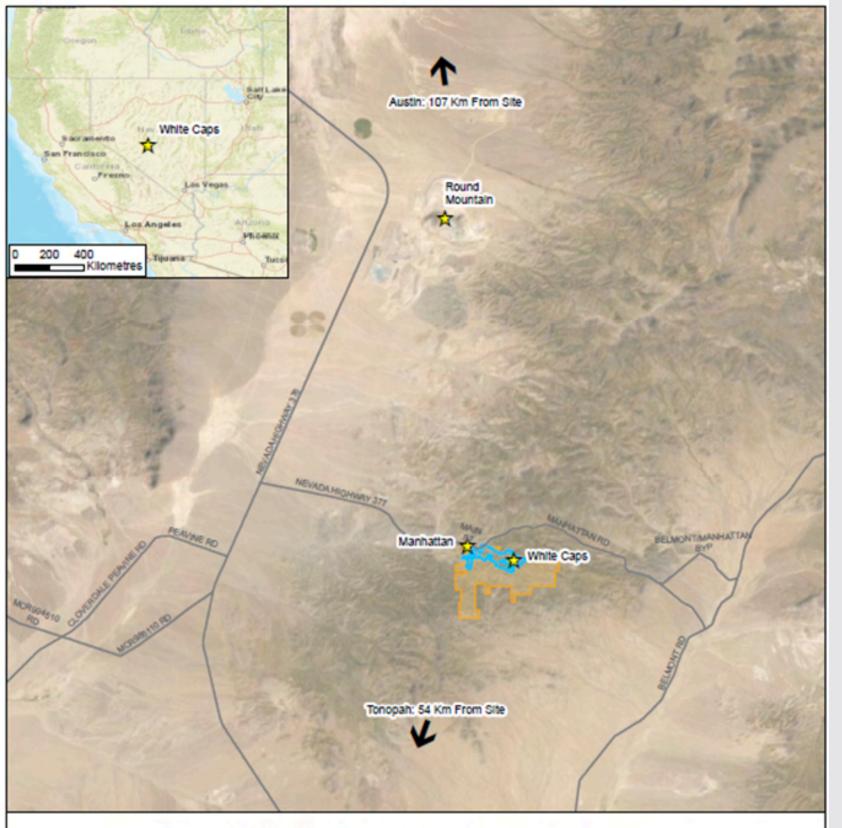
VAST AND ACCELERATING MARKET

WHITE CAPS, NEVADA

POORLY EXPLAINED CARLIN-STYLE GOLD SYSTEM

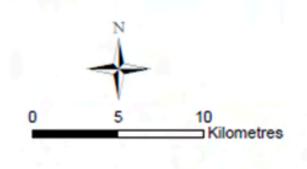
HISTORY

- Carlin Type Gold Deposit
- High-grade White Caps Mine produced >125,000 oz at circa 30g/t gold pre 1950's
- Mined ore grades ranged from 33g/t to 79g/t gold over 6m to 9m widths



EXPLORATION RESULTS

- Mineralisation at White Caps Mine concentrated along structural intersections
 within the Cambrian White Caps Limestone unit which averages 20 m
 thickness. Numerous cross-cutting north-south faults localise
 mineralisation within the host carbonates
- 2 km x 500 m zone of highly anomalous key pathfinder elements
- Results extend well outside of the White Caps Limestone, confirming the district scale potential


Samples	GOLD (ppm)	ARSENIC (ppm)	MERCURY (ppm)	ANTIMONY (ppm)	THALLIUM (ppm)
92	0.527	500.3	4.44	98.6	2.16
276	0.207	250.8	1.59	43.0	0.91

White Caps Claims Location

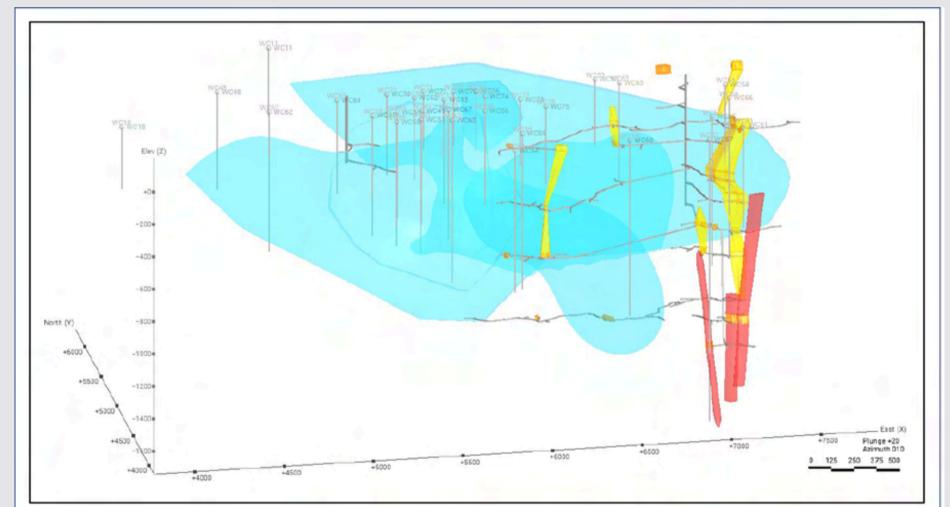
Date: 10/20/2022

CORE FOCUS

WHITE CAPS, NEVADA

LOCATION

- Located 15 km from Kinross' Round Mountain (3 Moz reserve) that has produced 15 Moz gold to date
- Excellent potential within 10 km2
 Project area containing 28 patented and 74 unpatented mining claims
- High-grade White Caps Mine produced
 >125,000 oz at circa 30g/t gold
- Mined ore grades ranged from 33g/t to 79g/t gold over 6m to 9m widths
- Grades were noted to be increasing with depth, cross-cut on the lowest mine level (1300 foot, 400m) assayed
 10m at 94g/t (close to true thickness)


EXPLORATION

- Potential for thicker zones of mineralisation around historic workings as zones containing <10g/t gold were often ignored and not mined
- Historical soil geochemistry indicates
 White Caps is part of a large mineralised
 system as it is within:
 - a gold-arsenic-mercury anomaly that is 12km-long; and
 - a gold-silver soil anomaly that is 8km long

WHITE CAPS, NEVADA

EXPLORATION TARGETS*

MHITE CAPS PROJECT DATA REVIEW AND RESOURCE POTENTIAL CHARMS OBLIQUE LONG SECTION VIEW OF THE WIREFRAME SCENARIOS USED TO COMPILE THE EXPLORATION TARGET RANGE	PROJECT		
DIUMNG OBLIQUE LONG SECTION VIEW OF THE WIREFRAME	MHE		
	DAT	A REVIEW AND RESC	DURCE POTENTIAL
SCENARIOS USED TO COMPILE THE EXPLORATION TARGET RANG			
		USED TO COMPILE THE EX	(PLORATION TARGET RANGE)

Exploration Target	Depth Range	Tor	nnes		Grade /t gold)	Me (ounces	tal of gold)	
3	(m)	Min	Max	Min	Max	Min	Max	
1	0-350	2,000,000	3,000,000	2.5	3	110,000	290,000	
2	200-500	230,000	340,000	7	25	50,000	270,000	

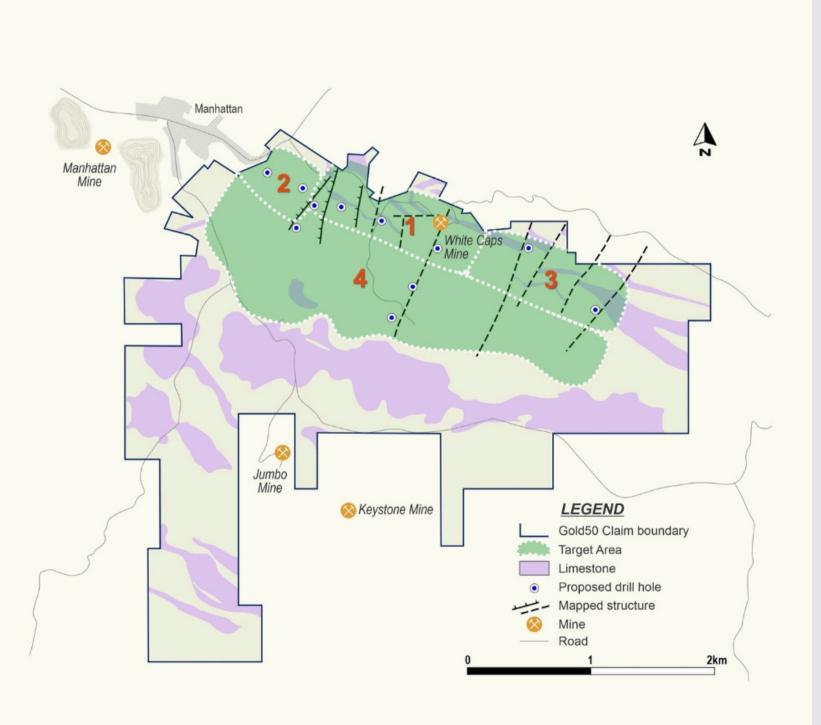
OBLIQUE LONG SECTION OF EXPLORATION TARGETS

EXPLORATION TARGET 1

(shown in blue)

At open-pittable depths and is based primarily on historical drilling ranges from 110,000 to 290,000 ounces at grades ranging from 2.5 to 3g/t gold.

EXPLORATION TARGET 2


(shown in red)

Based primarily on unmined mineralisation in underground workings and ranges from 50,000 to 270,000 ounces at grades ranging from 7 to 25g/t gold.

*These Exploration Targets are presented as a range of tonnages and grades as the potential tonnage and grade are conceptual in nature. There has been insufficient exploration to estimate a Mineral Resource and it is uncertain if further exploration will result in the estimation of a Mineral Resource. Furthermore, the quantities and quality could materially change if a Mineral Resource is estimated in accordance with the JORC Code.

WHITE CAPS TARGET AREAS & PROPOSED DRILLING

TARGET AREAS

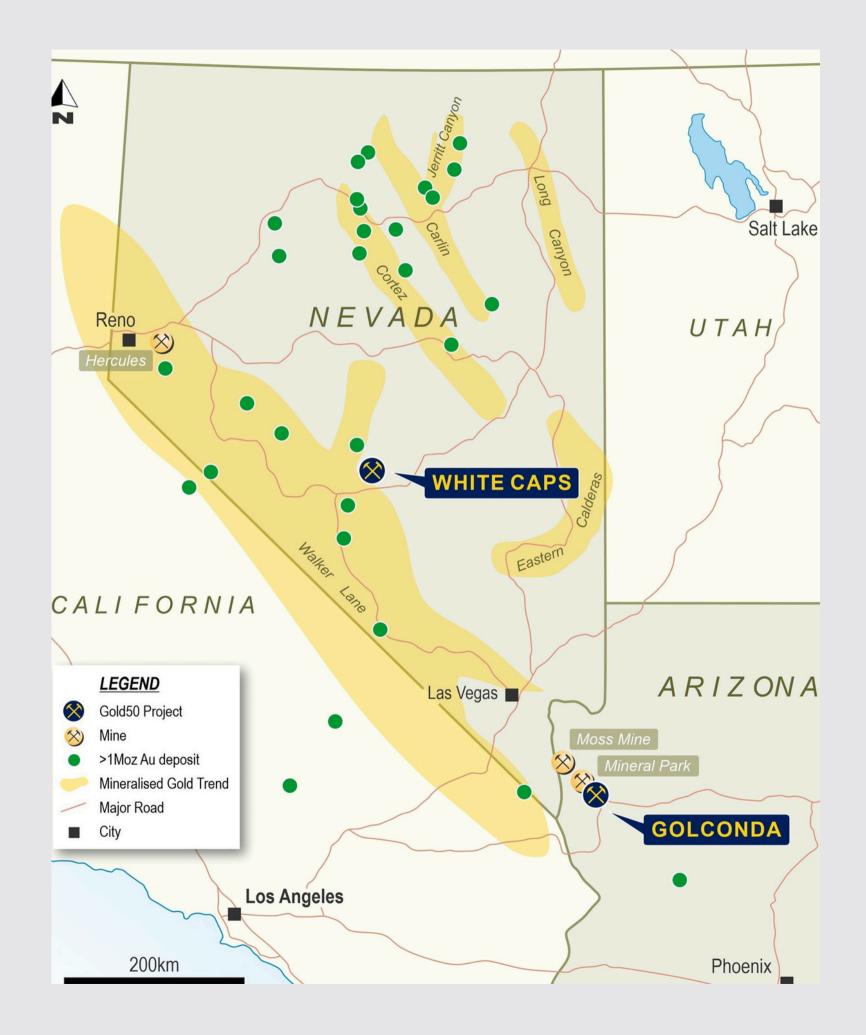
White Caps Central

Targets 1km of the NW strike extension of the limestone units exploited at the White Caps Mine and surrounding operations

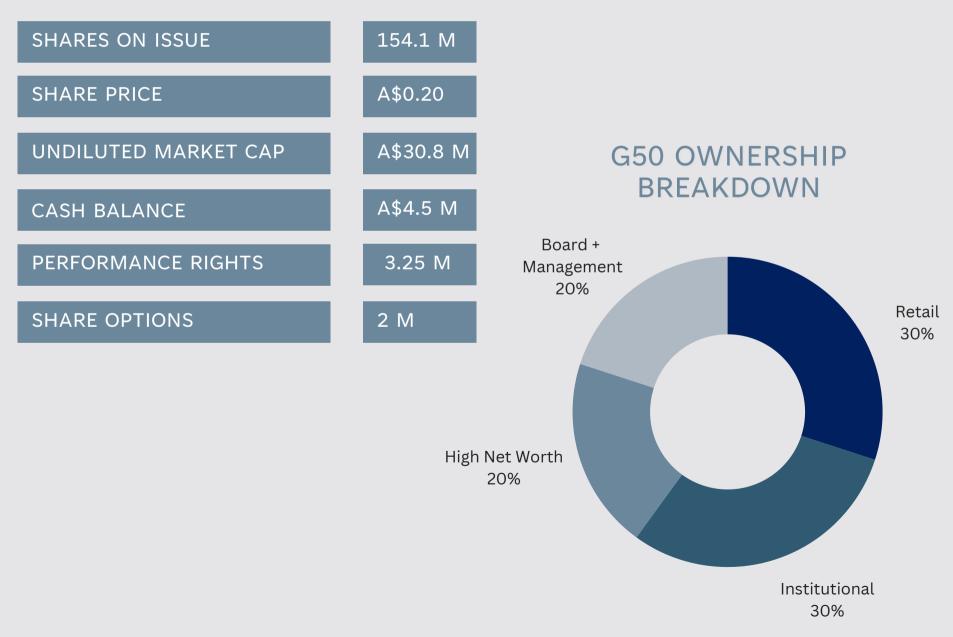
White Caps NW

NW of the last normal fault mapped, the limestone units appear to be displaced vertically and while disappearing from the surface, material from some small shafts in this area indicates that there are limestones occurring at depth

White Caps SE


The last significant shaft along the SE extension of White Caps is located 320m SE of the mine and beyond this, different layers of limestone were not extensively explored

Limestone Down Dip


The entire block of limestone-phyllite-quartzite striking NW for about 4km is consistently dipping to the SW, with the deep geometry of the limestone units unknown

CORPORATE SNAPSHOT

DECEMBER 2024

SUMMARY

JURISDICTION

Top 10 Destinations by Fraser Institute

• GEOLOGY

Historical High Grade Mines

COMMODITY

Hard Asset's with strong demand profiles

• INFRASTRUCTURE

Shadow's of Headframes

Approved for release by the Managing Director

MARK WALLACE

MANAGING DIRECTOR

queries@g50corp.com

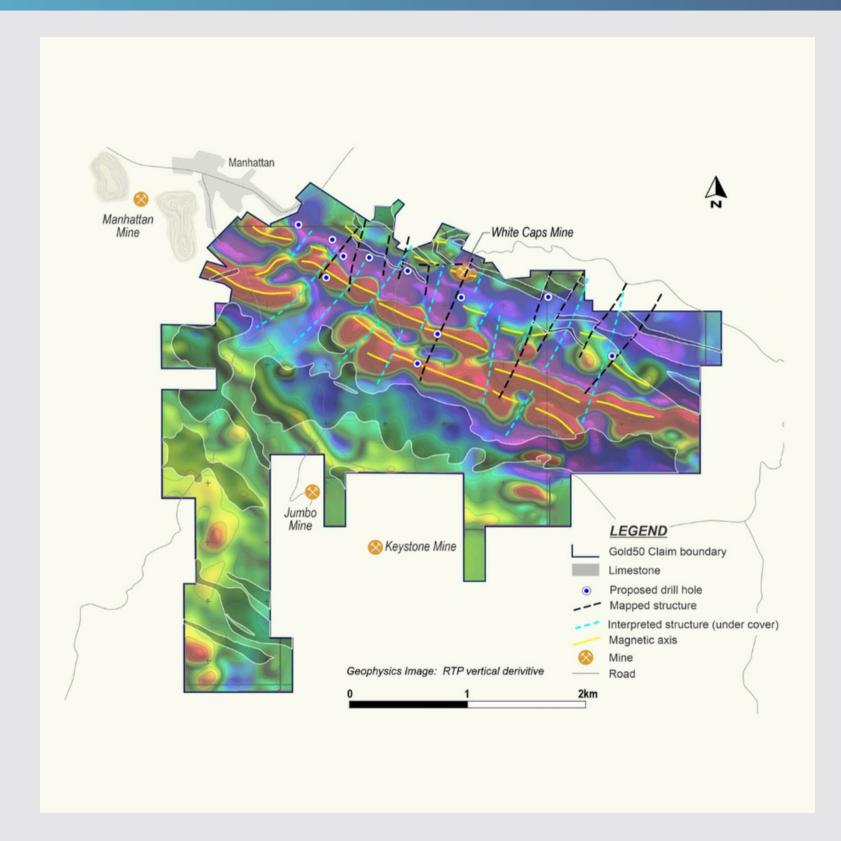
www.g50corp.com

https://www.linkedin.com/company/g50-corp-ltd/

APPENDIX

GOLCONDA

DRILLING - APRIL 2023



Left Image: Core from GDD02 from 178 m to 181m downhole which assays 40 g/t Gallium Stockwork and sheeted quartz-sulphide veins. Quartz-sericite-pyrite alteration

FLUID FLOW ALONG FAULTS

= SEDIMENT-HOSTED GOLD DEPOSITS

GEOLOGICAL MODEL EVOLVED

- Interpreted magnetic axes (yellow)
- Mapped faults (black)
 displace mapped limestone
 and quartzite units
- Interpreted faults (blue)
 displace interpreted magnetic
 axes (yellow) within the target
 sediment package

TARGETS DEFINED

- Proposed drill holes
- Combined mapped and interpreted faults provide target structures
- Limestone unit

WHITE CAPS, NEVADA

FREEPORT DRILLNG 1982 - 1984*

Hole ID	East (ft)	North (ft)	RL	Azimuth	Dip	Total Depth (ft)	Total Depth (m)	From (ft)	To (ft)	From (m)	To (m)	Au (oz/st)	Au (ppm)		
WC7	6373	3313	0	0	-90	208	63	195	200	59.4	61.0	0.096	2.7		
MC44	0007	4044	0	_	00	405	420	75	80	22.9	24.4	0.011	0.3		
WC11	6087	4814	0	0	-90	425	130	95	110	29.0	33.5	0.011	0.3		
	- 1		F . ii	2	- 1	F-10		260	265	79.2	80.8	0.01	0.3		
WC12	6916	3011	0	0	-90	440	134	350	355	106.7	108.2	0.01	0.3		
2							-	375	385	114.3	117.3	0.013	0.4		
-	- 1			7				345	350	105.2	106.7	0.157	4.4		
WC13	5070	5612	0	0	-90	640	195	350	355	106.7	108.2	0.011	0.3		
WOIS	3070	3012			-00	040	193	395	400	120.4	121.9	0.016	0.5		
	, E						4	535	540	163.1	164.6	0.015	0.4		
WC17	6464	1776	0	0	-90	860	262	450	455	137.2	138.7	0.26	7.3		
WC18	4939	3786	0	0	-90	385	117	0	385	0.0	117.3	0	0		
WC26	2726	4275	0	44	-65	405	123	0	405	0.0	123.4	0	0		
WC28	2790	4867	0	340	-60	400	122	0	400	0.0	121.9	0	0		
WC29	2651	3507	0	0	-90	205	62	0	205	0.0	62.5	0	0		
			-		9			35	40	10.7	12.2	0.135	3.8		
WC33	4794	1330	0	0	-90	-90	265	81	81	40	70	12.2	21.3	0.044	1.2
	1			11.	1 4 2		442	85	90	25.9	27.4	0.012	0.3		
WC34	5821	3653	0	0	-90	470	143	0	470	0.0	143.3	0	0		
*	7	A			1.5	430	435	131.1	132.6	0.016	0.5				
WC35	4883	5179	0	0	-90	740	226	495	500	150.9	152.4	0.495	14.0		
-	1			to the second	193		1	500	515	152.4	157.0	0.024	0.7		
WC36	5179	5809	0	0	-90	365	111	80	85	24.4	25.9	0.014	0.4		
11030	3173	3003	·		-30	303		105	170	32.0	51.8	0.033	0.9		
WC43	5804	3870	0	0	-90	445	136	65	70	19.8	21.3	0.012	0.3		
11045	3004	3070			-50	445	100	130	135	39.6	41.1	0.012	0.3		
WC44	5218	1997	0	328	-65	405	123	65	70	19.8	21.3	0.039	1.1		
	0210	1001		020	-00	100	120	75	80	22.9	24.4	0.013	0.4		
WC45	4805	1585	0	350	-60	345	105				1111	1 4 -	1 1		
WC47	-882	7864	0	0	-90	300	91	0	300	0.0	91.4	0	0		
WC48	5418	4405	0	0	-90	605	184	495	505	150.9	153.9	0.042	1.2		
								465	475	141.7	144.8	1.372	38.7		
WC49	4912	5457	0	0	-90	705	215	475	490	144.8	149.4	0.249	7.0		
-57								490	510	149.4	155.4	0.041	1.2		
i.				r i	1		P	145	155	44.2	47.2	0.02	0.6		
WC51	4774	5430	0	0	-90	825	251	630	635	192.0	193.5	0.021	0.6		
								795	800	242.3	243.8	0.032	0.9		

Hole ID	East (ft)	North (ft)	RL	Azimuth	Dip	Total Depth (ft)	Total Depth (m)	From (ft)	To (ft)	From (m)	To (m)	Au (oz/ <u>st</u>)	Au (ppm)
WC52	5127	5456	0	0	-90	505	154	305	310	93.0	94.5	0.019	0.5
WC53	5260	6490	0	0	-90	405	123	0	405	0.0	123.4	0	0
WC54	5043	7179	0	0	-90	740	226	415 440	420 445	126.5 134.1	128.0 135.6	0.284 0.12	8.0 3.4
WC55	4443	5936	0	0	-90	960	293	0	960	0.0	292.6	0	0
		177	13-40	7.077				515	520	157.0	158.5	0.102	2.9
WC56	4850	5801	0	0	-90	580	177	535	550	163.1	167.6	0.018	0.5
WC57	4164	6932	0	0	-90	1740	530	0	1740	0.0	530.4	0	0
WC58	4757	5290	0	0	-90	763	233	645	655	196.6	199.6	0.052	1.5
				15.1			6.2	470	475	143.3	144.8	0.015	0.4
WC59	4915	5321	0	0	-90	655	200	485	490	147.8	149.4	0.039	1.1
	4700	5505				4007	007	760	765	231.6	233.2	0.233	6.6
WC60	4732	5595	0	0	-90	1007	307	765	785	233.2	239.3	0.03	0.8
WC61	4374	7162	0	0	-90	635	194	0	635	0.0	193.5	0	0
14/000	5040	4000		100	- 00	050		265	270	80.8	82.3	0.019	0.5
WC62	5042	4629	0	0	-90	858	262	685	695	208.8	211.8	0.012	0.3
14/000	5400	0040				000	400	400	445	121.9	135.6	0.04	1.1
WC63	5180	6612	0	0	-90	600	183	595	600	181.4	182.9	0.029	0.8
week	4470	5040		0	00	075	207	810	820	246.9	249.9	0.013	0.4
WC64	4173	5848	0	0	-90	875	267	830	835	253.0	254.5	0.012	0.3
WC65	4536	7013	0	0	-90	920	280	0	920	0.0	280.4	0	0
WC66	4826	7159	0	0	-90	980	299	0	980	0.0	298.7	0	0
WOOT	4000	ECOC			-00	900	244	550	560	167.6	170.7	0.176	5.0
WC67	4902	5606	0	0	-90	800	244	725	764	221.0	232.9	0.125	3.5
WC68	4227	6498	0	0	-90	1080	329	1060	1070	323.1	326.1	0.064	1.8
WC69	5169	5030	0	0	-90	575	175	0	575	0.0	175.3	0	0
WC70	5215	5318	0	0	-90	495	151	365	380	111.3	115.8	0.041	1.2
110/0	5215	5516	U	. 0	-30	480	131	395	400	120.4	121.9	0.011	0.3
WC71	5226	5524	0	0	-90	360	110	105	120	32.0	36.6	0.127	3.6
WC/1	0220	5524	J	Ů	-30	300	110	335	360	102.1	109.7	0.082	2.3
WC72	5200	5687	0	0	-90	335	102	250	270	76.2	82.3	0.073	2.1
WC73	5001	6025	0	0	-90	410	125	0	410	0.0	125.0	0	0
WC74	5088	5844	0	0	-90	475	145	200	225	61.0	68.6	0.038	1.1
WC75	4866	6143	0	0	-90	485	148	0	485	0.0	147.8	0	0

COMPETENT PERSONS STATEMENT

COMPETENT PERSON STATEMENT

The information in this report that relates to Exploration Results and an Exploration Target is based on information compiled by Ms Hollie Fursey who is a full-time employee of RPM Advisory Services Pty Ltd ("RPM") and a Registered Member of the Australian Institute of Geoscientists. Ms Fursey has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity undertaken to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results and Mineral Resources". Ms Fursey consents to the inclusion in the report of the matters in the form and context in which it appears.

HISTORICAL EXPLORATION DATA

Mineral exploration has been undertaken at the White Caps Project (WCP) by various prospectors and companies over time. There are no exploration reporting requirements in Nevada, and as a result there are no governmental records of the results of any previous exploration work.

The information on the WCP available to G50 includes unpublished reports as well as information obtained from publicly available sources.

Inspection of the available reports covering the historical exploration provides limited to no information regarding quality control and quality assurance ("QA/QC") procedures that were followed. In addition, there is limited or no information in respect to such items as; sample type, sample size, where or how the samples were prepared for analysis, what analytical methods were utilised to determine the various elements, what if any standards, replicates and blanks were inserted into the sample batches, etc.

REFERENCES

- Ferguson, H.G., 1924, Geology and ore deposits of the Manhattan District, Nevada, U.S. Geological Survey Bulletin 723.
- Hughes, H.H., 1960, Report on White Caps Operations Review and Exploration Potential, Evaluation for the Board White Caps Gold Mining Company
- Saunders, Fred, August 2020 and revised April 2021, Report on White Caps Property Resource Potential, Evaluation for Martin O'Neal and Jeff Kramer White Caps Gold Mining Company, Inc.
- Shawe, D.R., 1986, Complex History of Precious Metal Deposits, Southern Toquima Range, Nevada, U.S. Geological Survey Open File report 86-0459.
- Stryhas, Bart, 2011, Updated NI 43-101 Technical Report on Exploration Calais Resources Inc., Manhattan Project, Nye County, Nevada, USA, SRK Consulting.

